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A quantitative r3C nuclear magnetic resonance analysis of an ethyleneepropylene copolymer produced on a 
modern high-field instrument produces a spectrum with eight discrete groups of peaks. Assignment of these 
peaks provides eight simultaneous equations to describe the six triad distribution numbers. We have 
demonstrated the advantages of solving directly this over-determined set of equations. We have observed 
that the relative uncertainty in the different triad numbers is approximately constant, and have used this 
observation to discuss the uncertainties in individual triad numbers as a function of their concentration. 
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INTRODUCTION With this in mind, we will discuss in more detail the 

During the last two decades 13C n.m.r. spectroscopy has 
become a valuable and indispensable analytical tool 
among polymer chemists. For example, the determina- 
tion of n-ad distribution numbers is frequently a 
prerequisite in the characterization of copolymers. 
Randall’, in his review article from 1989, discusses in 
great detail how to extract triad concentrations from 13C 
n.m.r. spectra of ethylene-based copolymers. Generally 
speaking, triad distribution numbers of copolymers are 
determined by the relative intensities (areas) of well 
defined regions in the r3C n.m.r. spectrum. The inherent 
uncertainties in the determination of triad concentra- 
tions are dependent on how well these regions are 
separated and to what accuracy these integrated regions 
can be determined. If no significant overlap of peak areas 
occurs, the uncertainty in the intensity of the region is 
mainly determined by the quality of the spectrum, i.e. the 
signal-to-noise ratio. This ratio can be improved by 
increasing the total number of transients. However, 
increasing the number of scans extends the experimental 
time, a factor that one would normally like to keep to a 
minimum. Thus, a compromise between a short experi- 
mental time and the desire for a high-quality spectrum 
(low uncertainty of a measured integral region) must be 
encountered. Surprisingly, few-if any-have critically 
discussed the inherent uncertainty in n-ad distribution 
numbers derived from n.m.r. integral measurements. 

* To whom correspondence should be addressed 

inherent uncertainties in n.m.r. integral measurements 
and the consequent propagation of errors in derived 
copolymer parameters such as n-ad concentrations. Our 
discussion will be limited to polypropylene/polyethylene 
(PP/PE) copolymers. Part of the work will be devoted to 
the question of how to estimate the expected uncertainty 
of triad concentrations of a PP/PE copolymer without 
having to perform the actual n.m.r. experiment. 

EXPERIMENTAL 

The PPjPE copolymer was dissolved in o-dichlorobenzene 
(ODCB) (approximately 10 wt% of polymer in solution). 
The spectra were run at 130°C on a Varian XVR 300 n.m.r. 
spectrometer operating at 75 MHz 13C resonance fre- 
quency. A pulse angle of approximately 30” and an 
acquisition time of 3 s were applied. A repetition time of 
10 s ensured quantitative sampling of the free induction 
decay (f.i.d.). The carbon signals were sampled under ‘H 
decoupling using the WALTZ decoupling pulse sequence to 
remove any coupling between proton and carbon nuclei. 
Full nuclear Overhauser effect (NOE) was obtained. A 
sweep width of 20 kHz was used and the f.i.d. was stored in 
a double precision mode. A total of 500 transients were 
sampled, corresponding to a total experimental time of 
approximately 1 h. Fourier transformation was performed 
on the hnal signals after applying a line broadening of 3 Hz. 
The final spectra were baseline corrected using a second- 
order polynomial. The areas (intensities) of the regions of 
interest were measured by digital integration. Six replicas of 
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the same sample were measured under the same conditions 
as previously described. 

DERIVED COPOLYMER PARAMETERS FROM 
N.M.R. INTENSITIES 

A typical i3C n.m.r. spectrum of a PPjPE copolymer is 
shown in Figure 1, where the eight integral regions of 
interest (A-H) are depicted. These eight integral regions 
result in eight equations available to extract the six triad 
concentrations: These equations are presented below’ : 

T, = kjPPP + 1 (PPE + EPP)] (1) 

TB = k[PEP + ; (PEE + EEP) + EPE 

+ ; (PPE i EPP)] 
(2) 

Tc = k (EPE) (3) 

To = k [2(EEE)+(PPE+EPP)+; (PEE + EEP)] (4) 

7’s = k (PPP) (5) 

T, = k(PEE + EEP) (6) 

X, = k(PEP) (7) 

T, = k [PPP + (PPE + EPP) + EPE] (8) 

The constant k is a normalization constant. Randall’ has 
emphasized that, in cases where there is a possible 
overlap of spectral regions (in particular between 
regions, D, E and F), a systematic error might arise in 
the derived triad concentrations. In this case equations 
(4)-(6) are combined into one single region TDEF, 
equation (9): 

T DEF = To + T, + TF = k [2EEE + (PPE + EPP)+ 

; (PEE + EEP) + PPP] (9) 

Equations (l), (2), (3), (7), (8) and (9) can be solved to 
give unique triad concentrations. The results are 
summarized in equations (lo)-( 15): 

k(EEE)=;(TDCF+TA+TC$3TG-TB-2TH) 

(10) 

k(PEE+EEP) = Tu+;Ts- TA-2TG (11) 

k (PEP) = T, (12) 

k (EPE) = Te (13) 

k (EPP + PPE) = ; (2Tu + TB - 2TA - 4T,) (14) 

k (PPP) = ; (3TA + 2Tc - ;Tn - TH) (15) 

Our experience is that spectral overlap of regions D, E 
and F is rare at 75 Hz C resonance frequency. Thus, 
a better approach would be to solve the over-determined 
set of equations (l)-(8). This will be discussed in the next 
section. 

Table 1 Observed integral regions on a PPI’PE copolymer of six replica 
measurements of the same sample 

Experiment A B C D E F G K 

1 12.18 14.50 4.73 29.41 9.57 8.58 2.75 18.28 
2 12.11 H.71 4.60 29.71 9.58 7.95 2.55 18.79 
3 12.71 14.10 3.95 29.53 9.42 8.47 2.36 19.47 
4 12.44 14.27 4.29 30.11 9.13 7.96 2.23 19.57 
5 12.01 M.18 4.42 30.07 9.47 8.46 2.78 18.62 
6 11.90 14.17 4.55 29.61 9.62 8.61 2.99 18.57 
AVR 12.23 14.32 4.42 29.74 9.47 8.34 2.61 18.88 
STDV 0.30 0.24 0.28 0.29 0.18 0.30 0.28 0.52 

RESULTS AND DISCUSSION 

The eight integral regions A-H measured on six replica 
13C n.m.r. spectra of the same PFjPE copolymer are 
shown in Table 1 together with the average integral values 
(AVR) and corresponding standard deviations (ST 

The data in Table 1 indicate that the observed 
uncertainty (standard deviation) of an integral is 
constant (except for the data in the last column) and 
independent of the absolute value of the integral This 
observation is in agreement with numerous other 
experimental results obtained on analogous copolymer 
samples studied in our laboratory, and we make the 
general statement that the absolute uncertainty of an 
n.m.r. integral is constant and independent of the 
absolute intensity of the integral region. One should 
keep in mind, however, that this constant is dependent 
on the experimental parameters used in running an 
n.m.r. spectrum. ‘When changing the repetition time, 
pulse angle, number of transients or the polymer 
concentration, this ‘absolute’ uncertainty will change 
accordingly. However, under identical experimental 
conditions this uncertainty will be constant. This 
observation is of great value and wil! be adopted 
beneficially when trying to estimate the uncertainty of 
triad concentrations, or any polymer parameter derived 
from these integral regions, by computer sirnulation. 
This idea will be discussed in the next section. The triad 
concentrations can be determined by solving equations 
(l)-(8) analytically, without reducing the number of 
equations, by a linear least-squares analysis. Such an 
approach is rather appealing because it will yield a good 
test of the internal consistency of the data. These results 
are given by equations (16)-(21): 

k (EEE) = alITA + alzTB + alsTc T ar4To + arsT,+ 

%TF + al;iTG + %3rH (16) 

k (PEE + EEP) := ‘%lTA + %T, + %Tc + %4T,+ 

a25 TE + a26 TF + a27 TG + a28 TH (17) 

k(PEP)=a31TAia32Tg+a33T,ta,,T~+a3sTE+ 

a36 TF + a35 TG f a38 TH (18) 

k(EPE) = a4,TA+a42TB+a43Tc +a44TD +aJsT,+ 

a46 TF + a47 xG + a48 TH (19) 

k (EPP + PPE) = asiT. + a52Tn + %rc + &47-p+ 

a55 TE -+ a56 TF + a57 TG + a58 TH c-w 
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Table 2 Calculated coefficients a, (equations (16)-(21)) derived by solving equations (l)-(8) 

i 1 2 3 4 5 

1 -0.1627 -0.1386 0.4880 0.5000 0.5120 

2 0.0241 0.1687 -0.0723 0.0000 0.0723 

3 0.0482 0.3373 -0.1446 0.0000 0.1446 

4 -0.2651 0.1446 0.7952 0.0000 0.2048 

5 0.3133 0.1928 -0.9398 0.0000 -1.0602 

6 0.2651 -0.1446 0.2048 0.0000 0.7952 

6 7 8 

-0.1807 0.1386 -0.3494 

0.9157 -0.1687 -0.0964 

-0.1687 0.6627 -0.1928 

-0.0723 0.1446 0.0602 

-0.0964 -0.1928 0.7470 

0.0723 0.1446 -0.0602 

k (ppp) = a61 TA + a62 TB + a63 T, + a64TD + a65 TE+ 

u66 TF + a67 TG f u68 TH 

The coefficients aij are presented in Table 2. 
(21) 

Thus, triad concentrations can be solved by two 
different approaches as summarized by the two sets of 
equations (IO)-( 15) and (16)-(21). In the discussion that 
follows we simply denote these solutions ‘A’ (equations 
(lo)-(15)) and ‘B’ (equations (16)-(21)). The derived 
concentrations are calculated from the integral regions A 
to H for each of the six replicas shown in Table 1. The 
average values and corresponding standard deviations 
are summarized in Table 3. 

Except for the (PPE + EPP) concentration the stan- 
dard deviation of the triad concentrations determined by 
method ‘B’ is smaller than the corresponding standard 
deviation by method ‘A’. A statistical comparison (Z- 
test) between the two sets of mean concentrations tells us 
that there is no significant difference between the ‘A’ and 
‘B’ solutions based on a 0.01 significance level, and 
indicates that method ‘B’ is to be recommended over ‘A’ 
when calculating triad concentrations. It is not possible 
to make such a general statement at this stage. However, 
this question will be discussed more thoroughly in the 
next section. 

In the last column of Table 3 we have calculated the 
mean triad concentrations by the ‘A’ and ‘B’ methods. 
Applying equations (l)-(S) we can calculate the integrals 
of regions A-H and present these integrals as an eight- 
dimensional vector T: 

T=(12.14, 13.96, 4.43, 29.50, 9.60, 8.53, 2.72, 19.11) 

where the successive numbers represent the integrals of 
regions TA, TB, Tc, T,, TE, TF, TG and TH respectively. 
All these integrals lie within the experimental uncertainty 
of the observed integrals in Table 2. The interesting 
property of these integrals is that they will give identical 
triad concentrations whether one is using method ‘A’ or 
method ‘B’. The reason for introducing the vector T is a 
matter of convenience and will be explained in the next 
section. 

UNCERTAINTY IN TRIAD CONCENTRATIONS 
DETERMINED BY SIMULATION 

We have already seen that, for a particular choice of 
experimental conditions (pulse angle, repetition time, 
number of transients, etc.), the uncertainty in the integral 
of a particular region (A-H) will be constant and 
independent of the absolute integral of the region itself. 
An interesting question arises. Knowing the true triad 
concentrations of a copolymer, would it be possible to 
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Table 3 Average n-ad concentrations as determined from the data 
presented in Table I by use of equations (lo)-(15) (‘A’) and equations 
(16)-(21) (‘B’). The numbers in parentheses represent standard 
deviations. The averages of the ‘A’ and ‘B’ solutions are given in the 
last column 

Triads ‘A’ ‘B’ (‘A’+‘B’)/2 

(EW 0.247 (0.024) 0.251 (0.008) 0.249 
(PEESEEP) 0.214 (0.021) 0.209 (0.006) 0.211 

(PEP) 0.065 (0.007) 0.070 (0.006) 0.067 
(EPE) 0.110 (0.007) 0.110 (0.007) 0.110 
(PPE+EPP) 0.123 (0.018) 0.128 (0.023) 0.126 

(PPP) 0.242 (0.007) 0.233 (0.004) 0.237 

predict the expected uncertainty of these concentrations 
before actually running the n.m.r. experiment? 

Assuming a Gaussian error distribution about the 
mean integral Ti of region i, we could simulate the error 
distribution function of any triad concentration by 
method ‘A’ or method ‘B’. This implies that eight 
integral regions must be varied independently. Let ‘cr’ be 
the standard deviation of the integral Ti (i = A-H), 
which is assumed to be constant and independent of the 
integral Tj (i = A-H), and equal to 0.30 (see Table 1; 
CT, = 100). The possible combinations of the eight error 
integrals of regions A-H can thus be written by an eight- 
dimensional integral vector of the form: 

r”= kl; g2> g3r g4, g5> g6, g7> g8) 

where gi represents the Gaussian error distribution of 
integral i. 

To determine the distribution of triad concentrations 
within the range of integrals T given by: 

T’=T+T* 

where T is given by: 

T=(12.14, 13.96, 4.43, 29.50, 9.60, 8.53, 2.72, 19.11) 

1000 T vectors were chosen randomly from the T* 
distributions. The corresponding 1000 triad concentra- 
tions were calculated by method ‘A’ and method ‘B’, 
respectively. The results are presented in Figure 2, where 
only the envelopes of the respective triad frequency 
distributions are shown. The numerical data are well 
fitted to Gaussian functions with mean values and 
standard deviations given in Table 4. 

Both methods predict the mean value of the triad 
concentrations with excellent accuracy, method ‘B’ 
somewhat better than method ‘A’. The calculated 
uncertainties derived by method ‘A’ are significantly 
larger than those derived by method ‘B’. The reason for 
this is probably the inherent ‘self-correction’ effect when 
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Figure 2 Relative frequency distribution of triads calculated by method 
‘A’ and method ‘B’ (see text for further details): EPPfPPE and EEE, 
(b) EPE and PPP, (c) PEP and PEEfEEP 

using the over-determined set of equations (method ‘B’). 
One important question remains to be answered. How 
does the uncertainty of a triad concentration depend on 
the triad concentration itself? We will limit the discussion 
by applying only method ‘B’. 

ABSOLUTE UNCERTAINTY IN TRIAD 
CONCENTRATION 

So far we have discussed the uncertainty of the different 
triad concentrations for a specific choice of these 

Table 4 Mean values and standard deviations of triad concentrations 
determined by simulation. For further details, see text 

(Triads ‘A’ ‘B’ True value 

(EEE) 0.240 (0.012) 0.249 (0.005) 0.250 
(PEEtEEP) 0.219 (0.016) 0.208 (0.006) 0.210 
(PEP) 0.065 (0.006) 0.068 (0.005) 0.067 
(EPE) 0.109 (0.006) 0.110 (0.006) 0.110 
(PPE+EPP) 0.130 (0.016) 0.133 (0.011) 0.126 
(PPP) 0.238 (0.012) 0.233 (0.005) 0.237 
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Figure 3 Absolute uncertainty of triad concentration vs. triad 
concentration: (a) EPE and EEE, (b) PPP and EEP+PEE, (c) PEP 
and PPE + EPP 

concentrations. To’ determine how the absolute uncer- 
tainty in a specific triad concentration depends on the 
triad concentration itself, we can calculate this uncer- 
tainty by applying the traditional method of error 
analysis. The (normalized) concentration of a triad 
distribution (i), expressed by the integrals Ti and the 
coefficients aii (Table 2), can be written by equation (22): 

The term (i) on the left-hand side of equations (22) is a 
shorthand notation for the specific triad concentration, 
i = 1 (EEE), i = l! (PEE + EEP), i = 3 (PEP), i = 4 
(EPE), i = 5 (EPP -t PPE), i = 6 (PPF). The uncertainty 
(standard deviation) in each of the eight integrals T, is 
the same and equal to go. Using the principle of ‘error of 
propagation’ the standard deviation of(i) can be written: 

a(i) = ho c a(i) “1 ‘I2 
i ! aT, 1 1 (23) 

i 
Inserting equation (22) into equation (23), an analytical 
expression for the uncertainty (standard deviation, a(i)) 
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Figure 4 Relative uncertainty of triad concentration PEP 

of the triad concentration (i) can be derived, equation 
(24): 

44 
o= ffo I E,j f/i 2 Ej(Eja,i)2 

(C,%jq)’ + [Cj T,(Cm Grj)12 1 I” (24) 

The integrals TA to TH have been varied randomly to 
produce 1000 combinations of normalized triad distribu- 
tion concentrations. The derived standard deviation for 
each triad concentration is shown in Figure 3. One 
characteristic property of these plots is the broad range 
of 0 (i) values for small (i). These observations simply tell 
us that the uncertainty related to a specific value of the 
triad concentration (i) is affected by the relative 
distribution of the five residual triad concentrations. As 
can be seen on Figure 3, the uncertainty in a triad 
concentration increases with increasing concentration. 

However, the relative uncertainty decreases, as demon- 
strated in Figure 4 for i = 3 (PEP). 

CONCLUSION 

From the results obtained in this work we conclude that 
method ‘B’ using the over-determined set of eight 
equations would be the method of choice if triad 
concentrations are to be derived from n.m.r. integral 
measurements. This conclusion implicitly assumes that 
no overlap of integral regions exists in the n.m.r. 
spectrum which thus might lead to systematic errors in 
the derived triad concentrations as discussed by 
Randall’. Such an overlap of peaks has not been 
observed by us using a high-field spectrometer. The 
experimental n.m.r. data obtained on one copolymer 
sample made it possible to calculate the uncertainty of 
any normalized triad concentration. The results show 
that the uncertainty in a triad concentration is affected 
by the relative distribution of the other triad concentra- 
tions. This effect is larger for smaller values of(i). 
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